Orthogonal polynomials associated with invariant measures on Julia sets
نویسندگان
چکیده
منابع مشابه
Translation Invariant Julia Sets
We show that if the Julia set J(f) of a rational function f is invariant under translation by one and infinity is a periodic or preperiodic point for f , then J(f) must either be a line or the Riemann sphere.
متن کاملFekete Polynomials and Shapes of Julia Sets
We prove that a nonempty, proper subset S of the complex plane can be approximated in a strong sense by polynomial filled Julia sets if and only if S is bounded and Ĉ \ int(S) is connected. The proof that such a set is approximable by filled Julia sets is constructive and relies on Fekete polynomials. Illustrative examples are presented. We also prove an estimate for the rate of approximation i...
متن کاملThe Polynomials Associated With A Julia Set
We prove that, with two exceptions, the set of polynomials with Julia set J has the form {σ pn : n ∈ N , σ ∈ Σ} , where p is one of these polynomials and Σ is the symmetry group of J . The exceptions occur when J is a circle or a straight line segment. Several papers [1, 2, 3, 5] have appeared dealing with the relation between polynomials having the same Julia set J (for notation the reader is ...
متن کاملOn invariant sets topology
In this paper, we introduce and study a new topology related to a self mapping on a nonempty set.Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets ofX related to f, i.e. f := fA X : f(A) Ag P(X) is a topology on X. Among other things,we nd the smallest open sets contains a point x 2 X. Moreover, we find the relations between fand To f . For insta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1982
ISSN: 0273-0979
DOI: 10.1090/s0273-0979-1982-15043-1